

European Space Agency Climate Change Initiative Sea Surface Temperature **www.esa-sst-cci.org** 

## SST Climate Change Initiative ATSR and AVHRR harmonisation

Chris Merchant, Owen Embury & the SST CCI Team presented by Hugh Kelliher

















## Ambitions for SST CCI

An independent time series of SST that has sufficient length, uncertainty and stability to provide improved quantification of SST variability and change

#### Target characteristics

- Independence ۲
  - based on physics of radiative transfer and harmonisation, not dependent empirical tuning to other SST • measurements
- Covering at least 1983 to 2016 (target, 1981) ۲
  - includes the particular challenge of the El Chichon and Pinatubo/Hudson periods •
- High stability, high SST sensitivity, and low bias
- Integrated processing across levels 2 to 4 (swath, gridded and analysis)
- Uncertainty-quantified at all levels
- Skin SST (core retrieval) and 20-cm daily average estimates (model)







28 February 2019 National

Oceanography Centre

TURAL ENVIRONMENT RESEARCH COUNC

Page 2

| Requirement                                                                                           | GCOS<br>(2016)      | SST CCI URD L3/L4<br>breakthrough'                    | SST CCI Ph 1 result (v2.0)                                                                            | SST CCI Ph2 target (v2.1)<br>(1 sigma)                                |
|-------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Uncertainty /<br>demonstrated on scale                                                                | 0.1 K<br>/ 100 km   | 0.02 K / 100 km                                       | Generally ~0.2 K / regionally                                                                         | 0.1 K / 1000 km ATSR era,<br>0.2 K 1980s.                             |
| Stability<br>(retrospectively assessable<br>against tropical moorings only,<br>using current methods) | 0.03 K /<br>decade  | 0.02 K per decade;<br>0.05 K seasonally,<br>diurnally | Mostly <0.05 K per decade for 1996 – 2010;<br>seasonal stability generally ~0.2 K, locally<br>greater | <0.05 K per decade for<br>1991 to present;<br>~0.1 K / decade overall |
| Spatial resolution                                                                                    | 1 km to<br>100 km   | 0.1 deg                                               | 0.05 deg                                                                                              | 0.05 deg                                                              |
| Temporal resolution                                                                                   | Hourly to<br>weekly | Day/night (UTC)                                       | Day/night on standardized local time (L2, L3); daily (L4)                                             | Day/night SST (L2/L3)<br>Daily mean (all levels)                      |
| Uncertainty information                                                                               |                     | Total uncertainty                                     | Total and components                                                                                  | Total and components, corr. length scales                             |
| Type of SST                                                                                           | Blended             | Skin & buoy-depth                                     | Skin and buoy-depth                                                                                   | Skin and buoy-depth                                                   |
| Period                                                                                                |                     | ~1980 - now                                           | 1991 - 2010                                                                                           | 1981 - 2016                                                           |

Ο

ISFRN Service Review Meeting















Page 3

28 February 2019

#### **Sea Surface Temperature CCI**

÷



ATSRs: dual view, stable & accurate. Use as SST calibration reference.

AVHRRs: single view, not designed for climate, good coverage and a longer history.

2010-01-05

ATSRs & AVHRRs are blended using an improved version of Met Office "OSTIA".

ISFRN Service Review Meeting















National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Page 4

28 February 2019

#### ~35 year uncertainty-quantified SST CDR Integrated, consistent L2, L3 & L4



**ISFRN Service Review Meeting** 









~ Institute







**Oceanography Centre** NATURAL ENVIRONMENT RESEARCH COUNCIL

## **Methods for retrieving SST**

#### **Retrieval coefficients**

 $x = a_0 + \mathbf{a}^{\mathrm{T}} \mathbf{y}$ 

#### Used for dual view SSTs

- ATSRs
- Fixed coefficients derived by off-line radiative transfer
  - Harmonised along series of ATSRs

## Made "robust" to volcanic aerosol by finding coefficients, **a**, that

- minimize SST error variance in non-SAOD conditions
- subject to the constraint  $\mathbf{a}^{\mathsf{T}}\mathbf{k} = 0$ 
  - (k is the inter-channel SAOD impact)

#### **Optimal estimation**

$$\mathbf{z} = \mathbf{z}_a + \mathbf{S}_a \mathbf{K}^{\mathrm{T}} (\mathbf{K} \mathbf{S}_a \mathbf{K}^{\mathrm{T}} + \mathbf{S}_{\epsilon})^{-1} (\mathbf{y} - \mathbf{F}(\mathbf{x}_a))$$

#### Used for single-view SSTs

- AVHRRs
- Because there is insufficient real information content in 2 window channels without some prior constraint

#### In-line fast radiative transfer

#### Need prior volcanic aerosol and uncertainty

Derived from ATSR-1 and HIRS datasets

ISFRN Service Review Meeting













28 February 2019 Page 6

**Oceanography Centre** 

ATURAL ENVIRONMENT RESEARCH COUNCI

National

#### **SST CCI cloud detection: Bayesian**

#### **NWP ANALYSIS + UNCERTAINTIES**



 $\sim$ 

28 February 2019 Page 7



**ISFRN Service Review Meeting** 













## **ATSR-series BT harmonisation concept**



#### **SST** harmonisation logic



Norwegian Meteorological

~ Institute

**Oceanography Centre** 

NATURAL ENVIRONMENT RESEARCH COUNCI

esa





### **ATSR** – drifter





ATSR2

#### **ATSR – drifter**

ATSR2

0.6 0.6 RSD / K RSD / K 0.4 0.4 0.2 0.2 0.0 0.0 2ch (day) 2ch (day) 3ch 0.4 0.4 2ch 2ch ref 0.2 0.2 Median / K Median / K 0.0 0.0 -0.2 -0.2 -0.4 -0.41996 1997 1998 1999 2000 2001 2002 2003 2004 2002 2004 2006 2008 2010 1995 Year Year



AATSR

3ch

ref

2012

## **ATSR SST Harmonisation**

#### Harmonise BTs between sensors:

- 3.7 μm: Failed early on ATSR1 so no overlap
- 11 μm: Harmonise to AATSR
- 12 μm: Known issue on AATSR, so harmonise to ATSR2
- BT harmonisation addresses inter-satellite, but not intra-satellite
  - Biases between different channel combinations (e.g. 2-channel nadir vs. 3-channel dual view)
  - Harmonise SSTs between channel combinations (D3 used as 'reference' retrieval)

ATSR1 is least stable (operated at elevated temperature) and 3.7 µm is not harmonised

• Need to tie to in situ data at beginning of life





## **AVHRR harmonisation**



**SST** harmonisation:

Pre ~1995 – with reference to drifting buoys.

Post ~1995 – with reference to ATSR-2/AATSR/Metop-A



## **AVHRR Calibration issues and corrections**

- The AVHRR Level 1B data as produced by NOAA have a lot of calibration biases in both the visible and IR channels
- In CCI we have put in place procedures to reduce these biases
  - All calibration data are filtered for outliers
  - Visible channel
    - · Calibration based on CSPP (Univ. of Wisconsin) with time dependent coefficients
  - IR channels
    - All fundamentally based on a consistent calibration (Walton et al. 1998) unlike the operational calibration
    - Four sources of error (three major) still exist in Walton calibration which have to be modelled
      - Direct solar contamination of the internal calibration target (blackbody) in the 3.7µm channel
      - Stray light effects plus orbit drift effects give rise to a strong time dependent bias in the observed radiance
      - Error in relating the four PRT measurements on the internal calibration target (ICT) to the radiant temperature of the ICT
      - Scene temperature dependent bias due to errors in Walton et al. calibration.(smaller a few 10<sup>th</sup>s)
        - Use average trend from (A)ATSR vs AVHRR double differences for all AVHRRs
    - Preliminary models exist of all effects and are being implemented in the Level 1B reader
    - Finalising interplay between all effects for final radiance at the moment



## **AVHRR SST Harmonisation**

SST harmonisation applied after BT calibration / harmonisation

Calculate SST bias relative to reference as function of TCWV, time, angle, etc.

- ATSR2/AATSR for post-1995
- Need to use in situ pre-1995



Page 15

## How SST CCI is addressing users needs for CDR?

- Integrating data from many satellites using consistent approaches
- Processing from level 2 to 4 in a co-ordinated approach
- Maximising independence from in situ observations in the era where satellite references are available, by using physics-based approaches
- Emphasising stability through harmonising at level 1 and level 2 (as far as possible: improved level 1 harmonisation is coming via FIDUCEO for AVHRRs)
- Dealing with near-surface stratification and skin effects so as to make satellite products as compatible as possible with the centennial scale records
- Aiming to exclude aliasing of diurnal variability into long term trends
- Providing uncertainty information at all product levels





European Space Agency Climate Change Initiative Sea Surface Temperature **www.esa-sst-cci.org** 

# Bridging the Gap between AATSR and SLSTR

Chris Merchant, Owen Embury & the SST CCI Team presented by Hugh Kelliher















## Linking AATSR and SLSTR

- Metop-A is a key sensor to link AATSR to SLSTR
  - In Phase II, we have exploited Metop-A GAC (low res) and EUMETSAT (hi res) but the re-calibration work only can be applied to GAC
  - However, because of cloud detection advantages, we really want to use Metop-A FRAC to link, where
    we have both hi res and can re-calibrate
  - Metop-A also benefits from IASI on the same platform
- Approach
  - Make SLSTR-AVHRR\_A-IASI and AATSR-AVHRR\_A-IASI match-up datasets (MMDs)
  - Add radiative transfer and synthesis of SLSTR and AATSR from IASI
  - Assess SLSTR-AATSR calibration differences mediated by AVHRR\_A and by IASI
  - Develop interpretation and define gap bridging method suitable for nest phase of CCI (CCI+)
- Outputs
  - MMS reading tools and datasets.
  - Harmonisation methodology for AATSR-SLSTR and associated draft paper



## **Preliminary conclusions**

- Given our experience with SLSTR so far, and comparisons with IASI, SLSTR has as much credibility as a reference sensor as AATSR (and for the 12 µm channel, SLSTR is probably more secure).
- We don't therefore want to adjust SLSTR to AATSR or vice versa -- bridging is about tying the sensors that fill the gap to both AATSR and SLSTR at either end and temporally infilling across the gap.
- Comparison with in situ measurements, including data such as ships4SST, give the confidence that this gives a satisfactory outcome.



#### Towards a v3.0 SST dataset

We expect v2.0/v2.1 will not meet our targets and user requirements in some regards:

- SST stability in the 1980 to 1995 unlikely to meet GCOS 0.03 K/dec
  - Volcanic aerosol events (1982 and 1991) accounted for but relatively immature for AVHRRs
  - FIDUCEO-style harmonisation of calibration will happen after v2.0, and should be an available improvement
  - Both of the above can be improved by additionally exploiting the HIRS instruments (new FCDR coming from FIDUCEO)
    - Independent retrieval of IR AOD from volcanic aerosol events
    - Additional constraints on AVHRR stability by looking at AVHRR-HIRS differences over time



#### Towards a v3.0 SST dataset

We expect v2.0/v2.1 will not meet our targets and user requirements in some regards:

- GAC cloud detection needs improvement for CDR, despite progress made relative to CLAVR-X or EUMETSAT
  - Harmonised records will help next time •
  - Could HIRS also help here? •
  - Forward model for coastal zone reflectance •

Remote Sens. 2018, 10(1), 97; doi:10.3390/rs10010097

Open Access Feature Paper Article

**Bayesian Cloud Detection for 37 Years of Advanced Very** High Resolution Radiometer (AVHRR) Global Area **Coverage (GAC) Data** 

Claire E. Bulgin <sup>1,2,\*</sup> 🖸 💿 Jonathan P. D. Mittaz <sup>1,3</sup> 🗹 Owen Embury <sup>1,2</sup> 🗹 Steinar Eastwood <sup>4</sup> 🗠 and Christopher J. Merchant 1,2 2 0

<sup>1</sup> Department of Meteorology, University of Reading, Reading RG6 6AL, UK

- <sup>2</sup> National Centre for Earth Observation, Leicester LE1 7RH, UK
- <sup>3</sup> National Physical Laboratory, Teddington TW11 0LW, UK
- <sup>4</sup> Norwegian Meteorological Institute, Department of Research and Development, N-0313 Oslo, Norway
- Author to whom correspondence should be addressed.



**ISFRN Service Review Meeting** 









Norwegian

📈 Institute







#### Towards a v3.0 SST dataset

We expect v2.0/v2.1 will not meet our targets and user requirements in some regards:

- Biases from mineral aerosol such as Saharan Dust >>0.1 K
  - No accommodation of such dust in the state vector used for AVHRR (OE)
  - Time-series of hourly Saharan Dust Index now created by Meteo-France, but too late to be exploited for v2.0
    - Need to add to MMS system as a diagnostic to learn how to include this aerosol in the state vector and retrieve SST with less bias (aim for reduction by an order of magnitude)
    - Consider using product (with added value processing) as prior information
    - Need also to process this to a Saharan Dust climatology for use pre-SEVIRI
  - Need also to assess MW impact in dust areas (but this won't help pre 1998)



#### **Towards v3.0**

Other desirable / plausible tasks:

- Implement, test, improve, deploy AATSR-to-SLSTR stability method from bridging work
- Bring in SLSTR A and B in due course (this can learn from S3 MPC and outcomes of Tandem phase studies)
- Depending on assessment of microwave CDR work, may be able to introduce MW into the CDR without compromising stability
- L4 analysis development (at least keep step with best techniques)



## **Final Thoughts**

- CCI+ will be the only programme internationally doing R&D on the long-term SST satellite record, since US Pathfinder has apparently ceased R&D and FIDUCEO will be ended next year.
- Our USP is the 35+ year aspect, implying priority for
  - Maximising the value gained over the 1979 to 1995 period
    - Improved retrievals with respect to aerosols (mineral and stratospheric), stability, cloud detection, including by maximising additional constraints from HIRS
  - Pulling the AATSR-to-SLSTR work through from the bridging work to CDR

