

MAR SITA

Comparison (of shipborne radiometers) with other in situ measurements

Gary Corlett, Anne O'Carroll, Igor Tomazic

Validation uncertainty budget

- Satellite (σ₁)
 - Varies pixel by pixel

$$\sigma_{Total} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 + \sigma_5^2}$$

- Reference (σ_2)
 - Generally unknown; Estimate of O(0.1 K) for GTMBA moorings and radiometers; O(0.2 K) for drifters; negligible for Argo
- Geophysical: spatial surface (σ_3)
 - Systematic for single match-up; pseudo-random for large dataset
 - Can be reduced through pixel averaging (e.g. sample 11 by 11 instead of 1 by 1)
 - Includes uncertainty in geolocation (may be systematic even for large numbers)
- Geophysical: spatial depth (σ_4)
 - Systematic for single match-up for different depths; pseudo-random for large dataset at different depths (with diurnal & skin model)
- Geophysical: temporal (σ_5)
 - Systematic for single match-up; may be reduced for large dataset (if match-up window small enough)
 - Can be reduced with diurnal & skin model

Reference datasets

- Ship-borne radiometers
 - Traceable to SI; SST-skin; very-high accuracy; very-poor coverage
- Drifting buoys
 - Unknown calibration; global data; SST-depth; good coverage in recent ~decade
- Argo near-surface
 - Global; acceptable sampling; very-low uncertainty (calibration method to be analysed)
- GTMBÁ
 - Better calibration; SST-1m; acceptable coverage (influenced by data collection);
- VOS and VOSclim
 - Generally poor coverage; very high uncertainty on single sample
- Everything else...

Uncertainty estimates for various reference datasets

Data type	Year	Coverage	SST*	Uncertainty
Ship-borne IR radiometers	1 <mark>9</mark> 98 -	Repeated tracks in the Caribbean Sea, North Atlantic Ocean, North Pacific Ocean, and the Bay of Biscay; episodic deployments elsewhere in the world's oceans.	SSTskin	0.10 K
Argo floats	2000 -	Global [#] from \sim 2004 onwards.	SST-5m	0.05 K
GTMBA	1979 -	Tropical Pacific Ocean array completed in 1998; tropical Atlantic and Indian Ocean arrays installed later.	SST-1m	0.10 K
Drifting buoys	1991 -	Global [#] from ~ 2000 onwards.	SST-20cm	0.20 K

Validation results – "raw" drifter and Argo

Drifter matchups (top row) and Argo matchups (bottom row)

Colours show number of channels; solid lines indicate dual-view; dashed lines indicate nadir-only.

Validation results – drifter and Argo with FKC adjustments

Drifter matchups (top row) and Argo matchups (bottom row)

Colours show number of channels; solid lines indicate dual-view; dashed lines indicate nadir-only.

FKC = Combined Fairall & Kantha/Clayson skin-effect/diurnal-variability model driven by ERA-interim fluxes

Validation results – Compare drifter/FKC and radiometer

Drifter matchups (top row) and radiometer matchups (bottom row)

Colours show number of channels; solid lines indicate dual-view; dashed lines indicate nadir-only.

Radiometer data provided by ISFRN (http://www.shipborne-radiometer.org/); FKC = Combined Fairall & Kantha/Clayson skin-effect/diurnal-variability model driven by ERA-interim fluxes

Validation results – Compare radiometer and radiometer/FKC

Radiometer matchups (top row) and radiometer/FKC matchups (bottom row)

Time difference / hour

2-ch Night

— 3-ch Night

Colours show number of channels; solid lines indicate dual-view; dashed lines indicate nadir-only.

Radiometer data provided by ISFRN (http://www.shipborne-radiometer.org/); FKC = Combined Fairall & Kantha/Clayson skin-effect/diurnal-variability model driven by ERA-interim fluxes

Validation results – Histograms & Uncertainty Validation

Drifter/radiometer N2 matchups (LHS) and D2 matchups (RHS)

Summary

- Validating satellite SST retrievals using reference data sets has many sources of error that cannot easily be corrected
 - By considering each term we end up with a validation uncertainty budget
- We can minimise the magnitude of certain effects using our knowledge of variability in upper ocean temperature
 - We should always be retrieving SST_{skin} from IR radiometers and using the physics to compare to reference data at different depths
- Radiometers provide an essential source of data for satellite SST_{skin} validation
 - Resulting statistics are generally noisier than for other primary in situ types
- Either uncertainty model is wrong or radiometer "measurement" uncertainty is higher than 0.1 K
 - Results might not yet be statistically significant

Comparison of AATSR and SLSTR: Bridging the gap...

Merchant, C.J.; Block, T.; Corlett, G.K.; Embury, O.; Mittaz, J.P.D.; Mollard, J.D.P. Harmonization of Space-Borne Infra-Red Sensors Measuring Sea Surface Temperature. Remote Sens. 2020, 12, 1048

