M-AERI and Saildrone validation of SLSTR, MODIS, VIIRS, ABI, and Reanalysis SST_{skin}

Peter J Minnett, Miguel Angel Izaguirre, Goshka Szczodrak, Bingkun Luo[#] and Chong Jia*

Dept. Ocean Sciences, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, USA

Harvard–Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA, USA
*Graduate Program of Meteorology and Physical Oceanography, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA

M-AERI SST_{skin} for Sentinel-3a SLSTR

• No new results for Sentinel 3a SLSTR, no comparisons with Sentinel 3b SLSTR.

Cruises	START	END	Ν	Mean	Med	STD	RMS	RSD
2017 Equinox	20170701	20171231	929	-0.274	-0.059	0.742	0.790	0.473
2017 Allure	20171002	20171126	205	-0.179	-0.023	0.780	0.799	0.313
2018 Equinox	20180111	20180415	532	-0.200	-0.106	0.691	0.719	0.326
2018 Adventure, Leg 1	20180212	20180527	451	-0.116	-0.029	0.529	0.541	0.291
2018 Adventure, Leg2	20180601	20181231	1344	0.038	0.033	0.385	0.386	0.242
2018 RHB	20180307	20181023	921	-0.001	0.044	0.415	0.415	0.275
2019 RHB	20190224	20190329	394	-0.143	-0.050	0.471	0.492	0.326
Total	20170701	20190329	5216	-0.098	-0.008	0.565	0.574	0.296

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE Luo, B., Minnett, P.J., Szczodrak, M., Kilpatrick, K., & Izaguirre, M. (2020). Validation of Sentinel-3ASLSTR derived Sea-Surface Skin Temperatures with those of the shipborne M-AERI. *Remote Sensing of Environment* 244, 111826. <u>https://doi.org/10.1016/j.rse.2020.111826</u> FRM4SST: ISFRN Workshop

22-23 April 2024

MODIS SST_{skin} Comparison with M-AERI

R2019 SST _{skin}	Residuals minus ra	s MODIS diometer	S TERR • SST _{skin}	A night	t LWIR		R2019 I SST _{skin} (Residuals (SST4) m	MODIS	TERR iometer	A night • SST _{skin}	MWIR •
Quality	Mean	Median	SD	RSD	N	Ç	Quality	Mean	Median	SD	RSD	N
0	-0.102	-0.061	0.591	0.426	21725		0	-0.098	-0.047	0.449	0.324	22254
1	-0.276	-0.295	0.658	0.475	7353		1	-0.165	-0.129	0.460	0.332	7133

LWIR retrievals use a modified NLSST algorithm applied to clear-sky measurements at $\lambda = 11$ and 12 µm. MWIR retrievals use a modified NLSST algorithm applied to clear-sky measurements at $\lambda = 3.96$ and 4.05 µm

Quality = 0 is best, = 1 is good. $\Delta t \leq 30 \text{ min.} \Delta r \leq 10 \text{ km.}$

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

S-NPP VIIRS SST_{skin} vs M-AERI SST_{skin}

	Quality	Mean	Median	SD	RSD	Ν
R2022.0			SST _{ski}	_n day		
	0	0.043	0.062	0.453	0.327	6959
Period: 2 Jan 2012 –	1	-0.180	-0.131	0.604	0.436	5600
7 Sept 2021			SST _{skin}	night		
$\Delta t \leq 30$ min.	0	-0.002	0.013	0.428	0.309	16928
$\Delta r \leq 10$ km.	1	-0.251	-0.211	0.662	0.448	7909
			SST _{tripl}	_e night		
	0	0.008	0.020	0.316	0.228	12713
	1	-0.125	-0.097	0.432	0.311	9526

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Global statistics for VIIRS SST_{skin} retrievals compared to SST_{skin} derived from M-AERI

Advanced Baseline Imager (ABI) on GOES-16

- GOES-16 is above 75.2°W; became operational on 16th December 2017.
- SST_{skin} derived using NOAA ACSPO algorithm, using measurements at $\lambda = 8.4$ µm, 10.3 µm, 11.2 µm, and 12.3 µm.
- Hourly SST_{skin} data from https://podaactools.jpl.nasa.gov /drive/files/allData/ghrsst/ dataGDS2/L2P/GOES16/STAR/ v2.70.
- Matchups with M-AERI within 30 minutes and 5 km.

ABI – M-AERI SST_{skin} Statistics

CRUISES	Ν	MEAN	MED	STD	RMS	RSD
2018 Equinox	10869	0.036	0.035	0.302	0.304	0.19
2018 Allure	8948	0.035	0.031	0.231	0.233	0.20
2018 Adventure	11840	0.171	0.136	0.394	0.430	0.24
2019 Adventure	10081	0.089	0.081	0.420	0.430	0.26
2018 RHB	1188	0.060	0.069	0.234	0.242	0.19
2019 RHB PNE	1003	0.069	0.101	0.291	0.299	0.16
2019 RHB	519	0.174	0.259	0.744	0.764	0.49
Total	44448	0.086	0.072	0.356	0.367	0.22

Luo, B., & Minnett, P.J. (2021). Skin Sea Surface Temperatures From the GOES-16 ABI Validated With Those of the Shipborne M-AERI. *IEEE Transactions on Geoscience and Remote Sensing* 59, 9902-9913. 10.1109/TGRS.2021.3054895

FRM4SST: ISFRN Workshop

22-23 April 2024

ERA5 Numbers: Big & Small

RCG CRUISES	Ν	MEAN	MED	STD	RMS	RSD	R/V CRUISES	Ν	MEAN	MED	STD	RMS	RSD
2014 ALLURE	9811	-0.196	-0.199	0.262	0.327	0.233	2004 RHB	5805	-0.212	-0.165	0.460	0.507	0.342
2014 EQUINOX	5421	-0.293	-0.288	0.247	0.383	0.219	2006 RHB	3908	-0.152	-0.124	0.383	0.413	0.357
2015 ALLURE	34,658	-0.208	-0.231	0.367	0.422	0.265	2007 RHB	1257	0.024	-0.029	0.441	0.442	0.415
2016 EQUINOX	28,673	-0.188	-0.205	0.371	0.416	0.272	2008 RHB	1592	0.020	-0.012	0.482	0.483	0.366
2017 EOUINOX	41.945	-0.244	-0.238	0.270	0.364	0.211	2011 RHB	2264	-0.038	-0.005	0.327	0.329	0.308
2017 ALLURE	5031	-0.145	-0.133	0.218	0.262	0.206	2013 RHB	7099	-0.201	-0.193	0.230	0.305	0.180
2018 FOUINOX	29 779	-0.266	-0.240	0.291	0.395	0.213	2015 ALLIANCE	5547	-0.299	-0.318	0.242	0.385	0.228
2010 2001 101	29,119	0.200	0.210	0.271	0.575	0.215	2018 RHB	38,108	-0.167	-0.148	0.282	0.328	0.206
ADVENTURE	7266	-0.170	-0.182	0.480	0.509	0.213	2019 RHB	8378	-0.329	-0.299	0.502	0.601	0.380
2018 ALLURE	27,215	-0.257	-0.252	0.274	0.376	0.238	TOTAL	73,958	-0.190	-0.170	0.348	0.396	0.247
2019 ADVENTURE	28,229	-0.169	-0.218	0.548	0.574	0.272		,					
							CRUISES	Ν	MEAN	MED	STD	RMS	RSD
TOTAL	218,028	-0.220	-0.228	0.358	0.420	0.239	R/V	73,958	-0.190	-0.170	0.348	0.396	0.247
							RCG	218,028	-0.220	-0.228	0.358	0.420	0.239
							TOTAL	291,986	-0.213	-0.214	0.356	0.415	0.243

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

SST_{skin} from Saildrones.

- Saildrones are autonomous surface vehicles that carry a range of oceanographic and meteorological instruments.
- Two Saildrones, SD-1036 & SD-1037, were deployed for 150-day cruises in the Pacific Sector of the Arctic in 2019. Each carried a pair of Heitronics radiometers for the derivation of SST_{skin} .
- After stringent qc, SST_{skin} accuracy is 0.12 K.

Image © Saildrone Inc. Used with permission.

FRM4SST: ISFRN Workshop 22-23 April 2024

MODIS – Saildrone SST_{skin}

		Aqua MODIS			Terra MODIS	
	SD-1036	SD-1037	Total	SD-1036	SD-1037	Total
Mean	-0.073	-0.468	-0.263	-0.076	-0.490	-0.291
Median	-0.036	-0.352	-0.214	-0.021	-0.379	-0.207
STD	0.727	0.701	0.741	0.649	0.752	0.734
RSD	0.656	0.588	0.669	0.551	0.565	0.559
R	0.943	0.947	0.948	0.956	0.945	0.947
Num	411	380	791	409	444	853
		Aqua MODIS			Terra MODIS	
	QL = 0	Aqua MODIS QL = 1	Total	QL = 0	Terra MODIS QL = 1	Total
Mean	QL = 0 -0.173	Aqua MODIS QL = 1 -0.505	Total -0.263	QL = 0 -0.198	Terra MODIS QL = 1 -0.559	Total -0.291
Mean Median	QL = 0 -0.173 -0.138	Aqua MODIS QL = 1 -0.505 -0.496	Total -0.263 -0.214	QL = 0 -0.198 -0.132	Terra MODIS QL = 1 -0.559 -0.492	Total -0.291 -0.207
Mean Median STD	QL = 0 -0.173 -0.138 0.674	Aqua MODIS QL = 1 -0.505 -0.496 0.855	Total -0.263 -0.214 0.741	QL = 0 -0.198 -0.132 0.690	Terra MODIS QL = 1 -0.559 -0.492 0.788	Total -0.291 -0.207 0.734
Mean Median STD RSD	QL = 0 -0.173 -0.138 0.674 0.561	Aqua MODIS QL = 1 -0.505 -0.496 0.855 0.762	Total -0.263 -0.214 0.741 0.669	QL = 0 -0.198 -0.132 0.690 0.500	Terra MODIS QL = 1 -0.559 -0.492 0.788 0.670	Total -0.291 -0.207 0.734 0.559
Mean Median STD RSD R	QL = 0 -0.173 -0.138 0.674 0.561 0.956	Aqua MODIS QL = 1 -0.505 -0.496 0.855 0.762 0.908	Total -0.263 -0.214 0.741 0.669 0.948	QL = 0 -0.198 -0.132 0.690 0.500 0.954	Terra MODIS $QL = 1$ -0.559 -0.492 0.788 0.670 0.933	Total -0.291 -0.207 0.734 0.559 0.947

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

FRM4SST: ISFRN Workshop 22-23 April 2024 Jia, C., P. J. Minnett and M. Szczodrak, "Validation of MODIS Sea Surface Temperature at High Latitudes Using Saildrone Data," Remote Sensing. (In preparation)

SD-1036 SD-1037 differences

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

FRM4SST: ISFRN Workshop 22-23 April 2024 Jia, C., P. J. Minnett and M. Szczodrak, "Validation of MODIS Sea Surface Temperature at High Latitudes Using Saildrone Data," Remote Sensing. (In preparation)

Atmospheric conditions.

BT difference is determined by both the sea surface boundary conditions and intervening atmosphere between surface and the satellite. Jia, C., P. J. Minnett and M. Szczodrak,

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

FRM4SST: ISFRN Workshop 22-23 April 2024

"Validation of MODIS Sea Surface Temperature at High Latitudes Using Saildrone Data," Remote Sensing. (In preparation)

Emissivity difference effects.

 $E \Delta BT = (\varepsilon_{11} - \varepsilon_{12}) * (T_s - \overline{T_a})$

FRM4SST: ISFRN Workshop 22-23 April 2024

Summary

- Well-calibrated shipboard radiometers are capable of assessment of accuracy of satellite SST_{skin} retrievals, and also SST_{skin} from analysis fields.
- Stable, simple radiometers on Saildrones can provide accurate SST_{skin} in sparsely sampled regions in harsh conditions with long deployments.
- Saildrone SST_{skin} comparisons with MODIS SST_{skin} have revealed:
 - Effects of air-sea temperature differences and inversions in the Arctic troposphere.
 - Brightness temperature differences (11µm, 12µm) are influenced by surface emissivity when the atmosphere is very dry.

Acknowledgments

- Funding from NASA.
- Support from Royal Caribbean Group.
- Support from NOAA S Ronald H Brown.
- Support from Saildrone Inc.

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Thank you.

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

J

NASA