IRISS: Ocean Surface Skin Temperature Measurements using a Simplified Calibration Technique

Andy Jessup

Air-Sea Interaction and Remote Sensing Department Applied Physics Laboratory, University of Washington

> Acknowledgements NSF OTIC Program Elizabeth Thompson, NOAA PSL Mike Reynolds

> > **ISFRN Workshop 2024**

Simplified Design for T_{skin} Measurement

Conventional Approach (ISAR, SISTER, ROSR)

- Single radiometer with mirror
- Two-point calibration using hot and ambient blackbodies (Gain and Offset)

New Approach

- Separate radiometers to measure sea and sky
- One-point calibration with ambient blackbody (Offset) + Lab cal/characterization

<u>Outline</u>

- IRISS: Simplified Calibration with Separate Sky Measurement
 - Radiometer Uncertainty: Self-Emission Effect
 - Design and Results compared to ROSR
 - Relevance to 2022 CEOS Comparison [Yamada et al., 2024]
- Proposal for 2025 Ship-based Field Comparison

Gain Stability: ROSR3 on 2016 SPUR-2 Cruise

Radiance vs Ambient BB Temperature

T_{skin}: 1-pt vs 2-pt Calibration

- Gain appears stable except for outliers due to rapid solar heating
- Threshold of $dT_{int}/dt < 4.5 \text{ °C/hr}$

IRISS Design Strategy

- Laboratory calibration to determine gain
- Radiometer gain is stable for dT_{int}/dt < 4.5 °C/hr (sun shield)
- Offset provided by in situ ambient blackbody
- Self-emission effect corrected using laboratory characterization

Radiometer Uncertainty

Primarily due to two sources of non-ideal effects [*Nutter*, 1988]
– Radiation Detector: responsivity changes, internal ref. uncertainty
– Optical System: Self-emission from internal element and housing
Heitronics KT15/CT15 Pyranometer Manufacturer Specification
"±0.5 °C + 0.7% of the difference between the target & housing temp.

Radiometer Uncertainty

Primarily due to two sources of non-ideal effects [*Nutter*, 1988]
– Radiation Detector: responsivity changes, internal ref. uncertainty
– Optical System: Self-emission from internal element and housing
Heitronics KT15/CT15 Pyranometer Manufacturer Specification
"±0.5 °C + 0.7% of the difference between the target & housing temp.

Sensor Self-Emission

target

(after Chang and Cao [2013]

radiometer

$$L = L_t + \sum L_i$$

$$\begin{aligned} &\operatorname{rror} \propto (T_i - T_t) \approx 15^{\circ} \mathrm{C} \\ &\approx 0.7\% \times (T_i - T_t) \\ &\approx \mathcal{O}(0.1) \,^{\circ} \mathrm{C} \end{aligned}$$

Laboratory Characterization

Example Self-Emission Characterization

T_{error} vs T_{BB} as a function of T_{box}

CT15.10 (8-14 μm) Manufacturer Calibration

T_{error} vs (T_{inst} - T_{BB}) as a function of T_{box}

Conventional vs New Approach

IRISS Self-Emission

Calibration Time Series

CT15.85 (9.6-11.5 μm): T_{box} = constant

Radiometer alone: 0.24% (T_{inst} - T_{BB}) Manufacturer spec: 0.70% (T_{inst} - T_{BB})

ROSR and IRISS Accuracy

S-MODE IOP1 10-30 October 2022 100 km off San Francisco

R/V Oceanus

ROSR3 vs ROSR9

Quantity	Mean	Std dev
$\begin{array}{l} T_{\rm ISAR} - T_{\rm CIRIMS} \\ T_{\rm ISAR} - T_{\rm MAERI} \\ T_{\rm MAERI} - T_{\rm CIRIMS} \end{array}$	0.00 -0.08 0.08	0.13 0.15 0.15

IRISS vs ROSR9

CONCLUDE IRISS w/ 1-pt in situ cal. has accuracy comparable to ROSR

[Jessup and Branch, 2008]

IRISS/ROSR Time Series and Histograms

ROSR & IRISS Time Series: T_{skin} and Difference

ROSR3 vs ROSR9 IRISS vs ROSR9 800 Occurrences 1000 · No. of Occurrences 600 800 -600 -400 400 No. of 200 200 0 -0.2 0.0 0.2 -0.2 0.0 0.2 -0.6 -0.4 0.4 -0.4 -0.6 TROSR9 - TROSR3 (°C) TIRISS - TROSR9 (°C)

Quantity	Mean	Std. Dev	Minimum	Maximum
T _{ROSR3-ROSR9}	-0.030	0.088	-0.295	0.359
T _{IRISS-ROSR9}	0.001	0.096	-0.525	0.336

Quantity	Mean	Std dev	Min	Max
$T_{\rm ISAR} - T_{\rm CIRIMS}$	0.00	0.13	-0.64	0.52
$T_{\rm ISAR} - T_{\rm MAERI}$	-0.08	0.15	-0.84	1.01
$T_{\text{MAERI}} - T_{\text{CIRIMS}}$	0.08	0.15	-1.15	1.10

12

0.4

Steps in Field Calibration Process

1. T_{raw}: Lab calibration applied

2. T_{1pt-cal}: Apply 1-point in situ cal

3. T_{skin}: Apply self-emission correction

IRISS Field and Laboratory Self-Emission

Binned field data follow laboratory characterization

ROSR Self-Emission: Lab Data

Constant Room Temperature: $T_{int} \approx 29 \ ^{\circ}C$

T_{ROSR}-T_{BB} vs T_{inst}- T_{BB}

ROSR – ISAR Comparison

Constant Room Temperature: $T_{int} \approx 29 \ ^{\circ}C$

2022 CEOS Comparison: Figure 5a, Yamada et al. [2024]

KT15 – ISAR Comparison Assume T_{int} = 30 °C

Rule out

Systematic error in ISAR – occurs in ROSR (derivative design)

Extrapolation error due to being away from ambient – occurs in CT15, which uses factory curves with wide range

17

ROSR Correction Approach

Reynolds' Method

- Linear Regression to characterized effect
- Compute coefficient Acorr applied to each in situ cal
- Compute Offset applied after in situ cal

Works best when T_{inst} = constant = lab cal value

• Not optimal...

Proposed New Method

- Monitor T_{inst}
 - KT15/CT15 standard output
 - Other: add case thermistor
- Apply correction based on T_{inst} T_{skin-uncorrected}

OR...

- Make T_{inst} = constant
- Use Reynolds' Method

Conclusions

- IRISS approach provides accuracy comparable to ROSR
 - Laboratory calibration
 - 1-point ambient temperature in situ calibration
 - Self-emission correction
- Self-Emission Effect
 - Inherent in all radiometers even M-AERI?!
 - May explain historical comparison differences
 - Next: Reanalysis of ROSR data with new method

Sensor	Effect (%)
Heitronics spec.	0.7
CT15.10	0.24
KT15.85	~0.25
IRISS	1.5
ROSR	1.6
ISAR	~1.0

Radiometer Field Comparison 2025

- Coastal Pacific
- Instruments
 - ROSR
 - IRISS
 - M-AERI
- 7-10 days
- Ship time support likely
 - Request time on current grant
 - U.S.-UK Research Collaboration under the NSF-UKRI/Engineering and Physical Sciences Research Council Lead Agency Opportunity
- Travel support explore options

R/V Rachel Carson 76 ft length 26 ft beam 4 crew 9 scientist 4 heads with showers Galley, wet and dry labs Full meteorological package

OUINAULT RESERVATION

Vancouver Is.

Columbia River

1998 Postcard to Craig from Lisbon (GasEx98)

On the R/V Ronald H. Brown